p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.225C24, C24.552C23, C22.622+ 1+4, C22.442- 1+4, C42⋊22(C2×C4), C42⋊5C4⋊5C2, C42⋊C2⋊26C4, C42⋊4C4⋊13C2, C42⋊8C4⋊15C2, (C2×C42).16C22, C23.8Q8.6C2, C23.288(C4○D4), (C23×C4).299C22, (C22×C4).754C23, C22.116(C23×C4), C23.128(C22×C4), C23.34D4.10C2, C23.63C23⋊12C2, C2.2(C22.45C24), C22.12(C42⋊C2), C2.C42.57C22, C2.1(C22.46C24), C2.24(C23.33C23), (C4×C4⋊C4)⋊31C2, C4⋊C4⋊42(C2×C4), C2.25(C4×C4○D4), (C4×C22⋊C4).6C2, C22⋊C4.84(C2×C4), (C2×C4).719(C4○D4), (C2×C4⋊C4).818C22, (C2×C4).230(C22×C4), (C22×C4).308(C2×C4), C2.26(C2×C42⋊C2), C22.110(C2×C4○D4), (C2×C42⋊C2).30C2, (C2×C22⋊C4).554C22, (C2×C2.C42).20C2, SmallGroup(128,1075)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.225C24
G = < a,b,c,d,e,f,g | a2=b2=c2=g2=1, d2=c, e2=b, f2=a, ab=ba, ac=ca, ede-1=ad=da, geg=ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, dg=gd, ef=fe, fg=gf >
Subgroups: 428 in 266 conjugacy classes, 144 normal (34 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C23, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C24, C2.C42, C2.C42, C2×C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C23×C4, C23×C4, C2×C2.C42, C42⋊4C4, C4×C22⋊C4, C4×C4⋊C4, C23.34D4, C42⋊8C4, C42⋊5C4, C23.8Q8, C23.63C23, C2×C42⋊C2, C23.225C24
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C4○D4, C24, C42⋊C2, C23×C4, C2×C4○D4, 2+ 1+4, 2- 1+4, C2×C42⋊C2, C4×C4○D4, C23.33C23, C22.45C24, C22.46C24, C23.225C24
(1 9)(2 10)(3 11)(4 12)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 62)(6 63)(7 64)(8 61)(9 23)(10 24)(11 21)(12 22)(13 27)(14 28)(15 25)(16 26)(17 31)(18 32)(19 29)(20 30)(33 39)(34 40)(35 37)(36 38)(41 55)(42 56)(43 53)(44 54)(45 59)(46 60)(47 57)(48 58)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 59 51 45)(2 32 52 18)(3 57 49 47)(4 30 50 20)(5 16 62 26)(6 41 63 55)(7 14 64 28)(8 43 61 53)(9 31 23 17)(10 60 24 46)(11 29 21 19)(12 58 22 48)(13 33 27 39)(15 35 25 37)(34 56 40 42)(36 54 38 44)
(1 13 9 41)(2 28 10 56)(3 15 11 43)(4 26 12 54)(5 58 38 30)(6 45 39 17)(7 60 40 32)(8 47 37 19)(14 24 42 52)(16 22 44 50)(18 64 46 34)(20 62 48 36)(21 53 49 25)(23 55 51 27)(29 61 57 35)(31 63 59 33)
(1 3)(2 4)(5 40)(6 37)(7 38)(8 39)(9 11)(10 12)(13 15)(14 16)(17 47)(18 48)(19 45)(20 46)(21 23)(22 24)(25 27)(26 28)(29 59)(30 60)(31 57)(32 58)(33 61)(34 62)(35 63)(36 64)(41 43)(42 44)(49 51)(50 52)(53 55)(54 56)
G:=sub<Sym(64)| (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,51,45)(2,32,52,18)(3,57,49,47)(4,30,50,20)(5,16,62,26)(6,41,63,55)(7,14,64,28)(8,43,61,53)(9,31,23,17)(10,60,24,46)(11,29,21,19)(12,58,22,48)(13,33,27,39)(15,35,25,37)(34,56,40,42)(36,54,38,44), (1,13,9,41)(2,28,10,56)(3,15,11,43)(4,26,12,54)(5,58,38,30)(6,45,39,17)(7,60,40,32)(8,47,37,19)(14,24,42,52)(16,22,44,50)(18,64,46,34)(20,62,48,36)(21,53,49,25)(23,55,51,27)(29,61,57,35)(31,63,59,33), (1,3)(2,4)(5,40)(6,37)(7,38)(8,39)(9,11)(10,12)(13,15)(14,16)(17,47)(18,48)(19,45)(20,46)(21,23)(22,24)(25,27)(26,28)(29,59)(30,60)(31,57)(32,58)(33,61)(34,62)(35,63)(36,64)(41,43)(42,44)(49,51)(50,52)(53,55)(54,56)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,39)(34,40)(35,37)(36,38)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,51,45)(2,32,52,18)(3,57,49,47)(4,30,50,20)(5,16,62,26)(6,41,63,55)(7,14,64,28)(8,43,61,53)(9,31,23,17)(10,60,24,46)(11,29,21,19)(12,58,22,48)(13,33,27,39)(15,35,25,37)(34,56,40,42)(36,54,38,44), (1,13,9,41)(2,28,10,56)(3,15,11,43)(4,26,12,54)(5,58,38,30)(6,45,39,17)(7,60,40,32)(8,47,37,19)(14,24,42,52)(16,22,44,50)(18,64,46,34)(20,62,48,36)(21,53,49,25)(23,55,51,27)(29,61,57,35)(31,63,59,33), (1,3)(2,4)(5,40)(6,37)(7,38)(8,39)(9,11)(10,12)(13,15)(14,16)(17,47)(18,48)(19,45)(20,46)(21,23)(22,24)(25,27)(26,28)(29,59)(30,60)(31,57)(32,58)(33,61)(34,62)(35,63)(36,64)(41,43)(42,44)(49,51)(50,52)(53,55)(54,56) );
G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,62),(6,63),(7,64),(8,61),(9,23),(10,24),(11,21),(12,22),(13,27),(14,28),(15,25),(16,26),(17,31),(18,32),(19,29),(20,30),(33,39),(34,40),(35,37),(36,38),(41,55),(42,56),(43,53),(44,54),(45,59),(46,60),(47,57),(48,58)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,59,51,45),(2,32,52,18),(3,57,49,47),(4,30,50,20),(5,16,62,26),(6,41,63,55),(7,14,64,28),(8,43,61,53),(9,31,23,17),(10,60,24,46),(11,29,21,19),(12,58,22,48),(13,33,27,39),(15,35,25,37),(34,56,40,42),(36,54,38,44)], [(1,13,9,41),(2,28,10,56),(3,15,11,43),(4,26,12,54),(5,58,38,30),(6,45,39,17),(7,60,40,32),(8,47,37,19),(14,24,42,52),(16,22,44,50),(18,64,46,34),(20,62,48,36),(21,53,49,25),(23,55,51,27),(29,61,57,35),(31,63,59,33)], [(1,3),(2,4),(5,40),(6,37),(7,38),(8,39),(9,11),(10,12),(13,15),(14,16),(17,47),(18,48),(19,45),(20,46),(21,23),(22,24),(25,27),(26,28),(29,59),(30,60),(31,57),(32,58),(33,61),(34,62),(35,63),(36,64),(41,43),(42,44),(49,51),(50,52),(53,55),(54,56)]])
50 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4T | 4U | ··· | 4AL |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4○D4 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C23.225C24 | C2×C2.C42 | C42⋊4C4 | C4×C22⋊C4 | C4×C4⋊C4 | C23.34D4 | C42⋊8C4 | C42⋊5C4 | C23.8Q8 | C23.63C23 | C2×C42⋊C2 | C42⋊C2 | C2×C4 | C23 | C22 | C22 |
# reps | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 4 | 1 | 16 | 8 | 8 | 1 | 1 |
Matrix representation of C23.225C24 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 3 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 4 | 4 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 2 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 3 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 4 | 4 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,2,3,0,0,0,0,0,3,0,0,0,0,0,0,1,4,0,0,0,0,0,4],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,2,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,3,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,4,0,0,0,0,0,4] >;
C23.225C24 in GAP, Magma, Sage, TeX
C_2^3._{225}C_2^4
% in TeX
G:=Group("C2^3.225C2^4");
// GroupNames label
G:=SmallGroup(128,1075);
// by ID
G=gap.SmallGroup(128,1075);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,232,758,100,346]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=g^2=1,d^2=c,e^2=b,f^2=a,a*b=b*a,a*c=c*a,e*d*e^-1=a*d=d*a,g*e*g=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*g=g*d,e*f=f*e,f*g=g*f>;
// generators/relations